Answers to Review Week Five

- 1. Chapter 6, question 3.
 - (a) The parameter s will increase as λ is increased. This will result in in a steady increase in the training RSS.
 - (b) The test RSS should show a pattern similar to the test MSE, initial decrease followed by an increase.
 - (c) The variance will decrease as the s gets larger.
 - (d) The squared bias will increase as s increases.
 - (e) The irreducible error stays constant.
- 2. Chapter 6, question 8.

```
# Chapter 6, question 8
```

```
# (a)
set.seed(100)
x < - rnorm(100)
irr.error<- rnorm(100)</pre>
# (b)
b3<- 4
b2 < - -3
b1<- 2
b0<- 1
y < - rep(0, 100)
v<- b0+b1*x+b2*x^2+b3*x^3+irr.error</pre>
sim.data<-
data.frame("Y"=y, "X"=x, "X2"=x^2, "X3"=x^3, "X4"=x^4, "X5"=x^5, "X6"=
x^6, "x^7"=x^7, "x^8"=x^8, "x^9"=x^9, "x^10"=x^10"
# (c)
library(leaps)
y.subsets<- regsubsets(Y~., sim.data)</pre>
summary.y.subsets<- summary(y.subsets)</pre>
summary.y.subsets
1 subsets of each size up to 8
Selection Algorithm: exhaustive
                                                                                 X4
                                                                                                 X5
                                                                                                                X6
                                                                                                                                Х7
                                   1
                                   3
                                                  "*" "*" "*" " " " " " "
                                   "*" "*" "*" "*" " " " " " " " "
5
                                   11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11 * 11
 6
             ( 1 ) "*" "*" "*" "*" " " "*" " " "*"
```

names(summary.y.subsets)

[1] "which" "rsq" "rss" "adjr2" "cp" "bic" "outmat" "obj"

Find best model from Cp, BIC and adjusted R^2
summary.y.subsets\$cp

[1] 3055.123715 145.957425 3.821967 3.846742 5.309942 6.014323 6.523634

[8] 7.149537

summary.y.subsets\$bic

[1] -245.9505 -498.8506 -586.0424 -583.5201 -579.4886 -576.2817 -573.3098 -570.2342

summary.y.subsets\$adjr2

[1] 0.9212483 0.9939413 0.9975554 0.9975806 0.9975688 0.9975768 0.9975901 0.9976006

plot(1:8, summary.y.subsets\$cp, type="l", xlab="Polynomial Order",
ylab="Cp")

text(3, summary.y.subsets\$cp[3],"X")

plot(1:8, summary.y.subsets\$bic, type="l", xlab="Polynomial Order",
ylab="BIC")

text(3, summary.y.subsets\$bic[3],"X")

plot(1:8, summary.y.subsets\$adjr2, type="1", xlab="Polynomial
Order", ylab="Adjusted R^2")
text(4, summary.y.subsets\$adjr2[4], "X")

Cp and BIC arrive at the correct model but the adjusted R2 suggests, incorrectly, a quartic model is best.

```
(d)
y.subset.fwd<- regsubsets(Y~.,data =sim.data ,nvmax = 10, method</pre>
= "forward")
summary.fwd<-summary(y.subset.fwd)</pre>
summary.fwd
1 subsets of each size up to 10
Selection Algorithm: forward
                                Х6
   (1)
2
   (1)
3
   (1)
   (1)
4
5
   ( 1
       )
6
7
   (1)
   (1)
9
   (1)
                                "*" "*" "*" "*"
                        11 * 11 * 11
    (1)
```

```
y.subset.bwd<- regsubsets(Y~.,data =sim.data ,nvmax = 10, method
= "backward")
summary.bwd<-summary(y.subset.bwd)</pre>
summary.bwd
1 subsets of each size up to 10
Selection Algorithm: backward
                               Х6
1
   (1)
2
   (1)
3
   (1)
4
   (1)
5
   (1)
6
   (1)
7
   (1)
8
   (1)
9
10
    (1)
                       11 * 11 * 11
                               "*" "*" "*" "*" "*"
```

Forward Plots

plot(summary.fwd\$cp,type="1",xlab="Polynomial Order", ylab="Cp")
text(which.min(summary.fwd\$cp),summary.fwd\$cp[which.min(summary.fwd\$cp)],"X")

plot(summary.fwd\$bic,type="l",xlab="Polynomial Order",
ylab="BIC")
text(which.min(summary.fwd\$bic),summary.fwd\$bic[which.min(summar

y.fwd\$bic)],"X")

plot(summary.fwd\$adjr2,type="l",xlab="Polynomial Order",
ylab="Adjusted R^2")
text(which.max(summary.fwd\$adjr2),summary.fwd\$adjr2[which.max(summary.fwd\$adjr2)],"X")

Backward Plots
plot(summary.bwd\$cp,type="l",xlab="Polynomial Order", ylab="Cp")
text(which.min(summary.bwd\$cp),summary.bwd\$cp[which.min(summary.bwd\$cp)],"X")

plot(summary.bwd\$bic,type="l",xlab="Polynomial Order",
ylab="BIC")
text(which.min(summary.bwd\$bic),summary.bwd\$bic[which.min(summar
y.bwd\$bic)],"X")

plot(summary.bwd\$adjr2,type="l",xlab="Polynomial Order",
ylab="Adjusted R^2")
text(which.max(summary.bwd\$adjr2),summary.bwd\$adjr2[which.max(summary.bwd\$adjr2)],"X")

As before Cp and BIC identify the correct model with forward and backward selection but R^2 does not and is especially wrong with backward selection.

```
#(e)
library(glmnet)
set.seed(1)
# sim.data2<- as.matrix(sim.data)
x<- model.matrix(Y~.,data=sim.data)[,-1]
y<- sim.data$Y
grid <- 10^seq(10, -2, length = 100)
sim.lasso<- glmnet(x, y, alpha = 1,lambda = grid)
sim.cv<- cv.glmnet(x, y, alpha = 1,nfolds=10)
plot(sim.cv)</pre>
```



```
bestlam <- sim.cv$lambda.min</pre>
lasso.coef <- predict(sim.lasso , type = "coefficients",s =</pre>
bestlam) [1:11, ]
lasso.coef
                         Χ
                                      X2
(Intercept)
                                                     Х3
              Х5
 8.941714e-01 1.824323e+00 -2.889171e+00 3.975499e+00
0.000000e+00 5.401150e-03
           Х6
                          Х7
                                        X8
 0.000000e+00 9.954679e-07
                             0.000000e+00 0.000000e+00
> lasso.coef <- predict(sim.lasso , type = "coefficients",s =</pre>
bestlam) [1:11, ]
> lasso.coef
                                                       ХЗ
  (Intercept)
                           Χ
                                        X2
X4
              Х5
 8.941714e-01 1.824323e+00 -2.889171e+00 3.975499e+00
0.000000e+00 5.401150e-03
           Х6
                          Х7
                                        X8
                                                       Х9
X10
 0.000000e+00 9.954679e-07 0.000000e+00 0.000000e+00
0.000000e+00
```

Next look at the + 1 sd deviation λ .

lasso.coef2 <- predict(sim.lasso , type = "coefficients",s =</pre> sim.cv\$lambda[sim.cv\$index[2]])[1:11,] lasso.coef2 (Intercept) Χ X2 Х3 X4 Х5 Х6 0.8255299 1.7795840 -2.8166071 3.9841480 0.00000000.0000000 0.0000000 X7 X8 Х9 X10 0.0000000 0.0000000 0.0000000 0.0000000 # This more conservative result has now reduced the sparse set to the three relevant features.